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Abstract. We reconsider the theory of the half-filled lowest Landau level using the Chern-Simons formu-
lation and study the grand-canonical potential in the random-phase approximation (RPA). Calculating
the unperturbed response functions for current- and charge-density exactly, without any expansion with
respect to frequency or wave vector, we find that the integral for the ground-state energy converges rapidly
(algebraically) at large wave vectors k, but exhibits a logarithmic divergence at small k. This divergence
originates in the k−2 singularity of the Chern-Simons interaction and it is already present in lowest-order
perturbation theory. A similar divergence appears in the chemical potential. Beyond the RPA, we identify
diagrams for the grand-canonical potential (ladder-type, maximally crossed, or a combination of both)
which diverge with powers of the logarithm. We expand our result for the RPA ground-state energy in the
strength of the Coulomb interaction. The linear term is finite and its value compares well with numerical
simulations of interacting electrons in the lowest Landau level.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) –
73.40.Hm Quantum Hall effect (integer and fractional) – 71.27.+a Strongly correlated electron systems;
heavy fermions

1 Introduction

The combination of an electronic interaction and a strong
magnetic field in a two-dimensional electron system yields
a rich variety of phases. These are best classified by the
filling factor ν, which is the electron density divided by
the density of a completely filled Landau level. In the case
of ν ∼= 1/2, the behavior of the system resembles that
of a Fermi liquid in the absence of a magnetic field, or at
small magnetic fields, and over the past years, a intriguing
picture has emerged: at ν = 1/2, each electron combines
with two flux quanta of the magnetic field to form a com-
posite fermion; these composite fermions then move in an
effective magnetic field which is zero on the average. The
interpretation of many experiments supports this picture.
Here, we mention transport experiments with quantum
(anti-) dots [1], in which features of the resistivity are re-
lated to closed loops of the composite fermions around the
dots, and also focusing experiments [2]; more references to
recent work can be found in [3–6].

Theoretically, the picture was developed in the pio-
neering work of Halperin, Lee, and Read [7]. They for-
mulated the Hamiltonian in terms of Chern-Simons (CS)
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transformed electrons and studied within the random-
phase approximation (RPA) many physical quantities.
Most prominent among these is the effective mass of the
composite fermions which they found to diverge at the
Fermi surface. This problem of the effective mass was
again taken up by Stern and Halperin [8] who calculated
the effective mass and also the quasiparticle interaction
function of Landau’s Fermi-liquid theory, see also [9,10].
Recently, Kopietz and Castilla [11] used the method of
higher-dimensional bosonization to extend the analysis
beyond the RPA. Thus treating the infrared singulari-
ties, they found that the vertex corrections render the
quasiparticle mass finite. The most difficult problem in all
these treatments is that the calculated composite fermion
spectrum should scale with the strength of the Coulomb
repulsion. Most recently, Shankar and Murthy [12] pro-
posed, within the CS approach, a new parameterization
which allows to separate the contributions of the CS par-
ticles from those of the magneto-plasmon oscillators in
the Hamiltonian. After they restrict the number of the
magneto-plasmon oscillators to the number of electrons in
the original Hamiltonian, they get a finite quasiparticle
mass which scales with the inverse of the strength of the
Coulomb repulsion.

The CS formulation of interacting electrons, with a
density such that the filling factor of a Landau level
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is ν ∼= 1/2, nicely realizes the concept of composite
fermions, in accordance with the experimental observa-
tions. The price to be paid for using the CS transforma-
tion is that the non-interacting system of electrons in a
strong magnetic field, after the transformation, becomes
a highly complicated, interacting problem – formulated in
terms of the CS field. The CS interaction diverges for small
wave vector k as 1/k2. Therefore, the singular diagrams
in leading order need to be resumed; these diagrams are
well known as the RPA of the jellium problem in d = 3.
But there is no small parameter in the problem of non-
interacting electrons in a strong magnetic field and there is
no reason to expect that the RPA diagrams already repro-
duce the correct result. In fact, as we shall see, the RPA
is even plagued with a marginal divergence in the energy.
The understanding, and even the evaluation of the RPA,
still seem to be incomplete: Is it necessary to introduce an
ultraviolet cut off in the momentum integrals, in order to
restrict the number of the magneto-plasmon oscillators,
or is that already inherent in the theory? After all, the
introduction of the cut off seems to be crucial for the con-
clusions in the work of Shankar and Murthy. The simplest
quantity for a study of this question is the ground-state
energy. Its evaluation in RPA should be straight forward.
But all approaches, of which we are aware, concentrate on
the behavior at small wave vector. Therefore, we recon-
sider the RPA and calculate the expression for the energy,
refraining from any approximations in the bare response
functions.

There is a second motivation for studying the energy
in RPA. For physical reasons, it is clear that the exact
energy per particle should be expandable in the strength
of the Coulomb interaction [13]. The lowest-order term is
exactly known, of course, it is the energy of the unper-
turbed lowest Landau level; still, one can not expect to
obtain that result (or the corresponding degeneracy) cor-
rectly within the RPA. Given the lowest order, we can
proceed calculating – in RPA – the next, the term lin-
ear in the strength of the Coulomb interaction. Within a
restriction to wave functions of the lowest Landau level,
there are no corrections beyond this first order. The con-
tribution of the Coulomb interaction to the total energy
seems not to be measurable; still, there are numerical sim-
ulations of interacting electrons in the lowest Landau level
by Morf and d’Ambrumenil [14] and Girlich [15] which are
well suited for a comparison with our analytical result. We
want to add that such an expansion with respect to the
Coulomb interaction should be useful also for the calcula-
tion of other quantities, as the self energy of the composite
fermions, because there the scale is set by the Coulomb
interaction.

The main problem of the RPA, which does not exist
for interacting electrons at zero magnetic field in d = 3,
remains the logarithmic infrared divergencies caused by
the 1/k2 behavior of the CS interaction at small wave
vector. Such a divergence already appears in the lowest
order in the RPA. Beyond the RPA, there are diagrams
showing divergencies with powers of the logarithm.

The outline of this work is as follows. First, we intro-
duce the model in its CS formulation. Then, we calcu-
late ground-state energy and chemical potential from the
grand-canonical potential in RPA using the exact bare
response functions. Further, we calculate the first term
of the expansion of the energy in the electron-electron
(Coulomb) interaction. Finally, we discuss the logarith-
mically divergent diagrams beyond the RPA.

2 Chern-Simons description

We consider interacting (spin aligned) electrons moving in
two dimensions in a strong magnetic field B in the neg-
ative z-direction transverse to the system. The electronic
density of the system is chosen such that the lowest Lan-
dau level of a non-interacting system is filled to a fraction
of ν = 1/φ̃ where φ̃ is an even integer. We are mainly inter-

ested in φ̃ = 2. Following the work of Halperin, Lee, and
Read [7], we describe the Hamiltonian in terms of Chern-
Simons (CS) fermions or composite fermions which consist

of the original electrons and φ̃ attached flux quanta:

H =
∑
k

(εk − µ) a†kak

+
1

2F

∑
k1,k2
k 6=0

Wk; k1,k2 a
†
k1
a†k2−kak2

ak1−k . (1)

Here, a†k creates (and ak annihilates) a CS fermion with
wave vector k. Since we consider only cases where the
filling factor is given by 1/φ̃, the sum of the external mag-
netic field and the mean CS field, ∆B, vanishes (com-
pare Ref. [7]) and εk is given by the free spectrum εk =
k2/(2mb), where mb is the electron band mass; we use
~ = 1, but restore ~ in final formulae. The chemical po-
tential is denoted by µ. Because of ∆B = 0, we can use
periodic boundary conditions; F is the area of the sam-
ple. The interaction has contributions from the fluctua-
tions of the CS vector potential and from the original
Coulomb interaction of the electrons, V (r) = ε2/r, where
ε2 = e2/(4πεrε0) and εr is the dielectric constant. Col-
lecting all these contributions, we get

Wk; k1,k2 = W (k) +
2πφ̃

mb
i

(
(k1 − k2)×

k

k2

)
ez; (2)

ez denotes the unit vector in z direction, orthogonal to the
system. Here, the last term comes from the term linear in
the CS vector potential. The quadratic term is contained
in K(k) in

W (k) = K(k) + V (k) , (3)

K(k) =
(2πφ̃)2

mb

N

F

1

k2
,

V (k) =
2πε2

k
·

Rewriting the original Hamiltonian in terms of CS oper-
ators a†, a as in the Hamiltonian (1), we have made an
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approximation which is already implicit in the treatment
of reference [7]: In the term quadratic in the CS vector
potential, we have replaced a pair of operators, a†a, by
its average and neglected thus the third order fluctuations
in the density, which would lead to three particle inter-
actions, i.e., sixth order in a†, a. This average leads to
the appearance of the density N/F in the CS interaction
K(k); N is the mean electron number, the CS particle
number. For the filling factors ν which we consider here,
we have

N

F
=

1

2πl2B

1

φ̃
· (4)

lB is the magnetic length, l−2
B = |eB|/~. The Hamiltonian

(1) is the starting point for a standard perturbation the-
oretical (diagrammatic) treatment. In the following, we
will limit ourselves to a study of the grand-canonical po-
tential within the RPA. This will enable us to derive ex-
plicit results for the ground-state energy and the chemical
potential.

3 Grand-canonical potential

The calculation of the grand-canonical potential
Ω(T, F, µ) in the RPA is described in text books
[16]. The only unusual feature in the present case is
the (linear) dependence of the interaction Wk; k1,k2 on
k1 − k2. Thus, one has to consider two kinds of vertices
in the perturbation theory, a density vertex and a current
vertex, and the RPA equation becomes a matrix equation
as stressed already in reference [7]. The grand-canonical
potential in the RPA, ΩRPA, is given by the series of ring
diagrams:

1

2n (n)

= −βΩ(n)
RPA(T, F, µ) = O

([ 1

η2

]n−1
)
. (5)

Here, we indicate the order of the leading singularity as
the infrared wave vector cutoff, η ∝ 1/

√
F , decreases. For

n = 1, this is a logarithmic singularity. The singularity
originates from the divergence of the CS interaction K(k)
at small wave vector. The symmetry factor, 1/(2n), is ex-
plicitely written in the diagram. We use the Matsubara
technique and write the result as

ΩRPA(T, F, µ) =

−
1

β

∑
k

ln
{

1 + e−β(εk−µ)
}

+
1

2β

∑
k 6=0

∑
ω

ln {1−Π00(k, ω) [W (k) +Π11(k, ω)]} .(6)

Here, the first term is the grand-canonical potential of
the free CS fermions. The second term is the contribu-
tion of the magneto-plasmon oscillators. In (6), the sum
is on Matsubara frequencies of Bose type (ω = 2πn/β,
n integer) and β = 1/(kBT ). The response functions of
the unperturbed system, Π00 and Π11, are defined and
studied in the next section.

3.1 Unperturbed response functions

As explained in the introduction, our aim is to evalu-
ate ground-state energy and chemical potential within
the RPA without additional approximations. Therefore,
we need to calculate the unperturbed response functions
exactly. They are given by a one-loop integral involv-
ing two unperturbed single-particle Greens functions. The
density-density response function (polarization part),Π00,
was calculated for the jellium problem in d = 3 by
Lindhard [17]. In the present case of d = 2, fortunately,
both response functions can again be calculated analyti-
cally. After performing the sum over Matsubara frequen-
cies (of Fermi type), we get

Π00(k, ω) =

∫
d2p

(2π)2

e−iω0+

nF (εp − µ)

−iω + εp − ε|p−k|

+(ω → −ω) (7)

and

Π11(k, ω) = (
2πφ̃

mb
)2

∫
d2p

(2π)2

(p× k)2

k4

×
e−iω0+

nF (εp − µ)

−iω + εp − ε|p−k|

+(ω → −ω) . (8)

Here, nF (x) is the Fermi function. The functions Π00 and
Π11 depend only on the absolute value of the wave vec-
tor k. Note that in order to simplify our formulae, we
absorbed a prefactor in Π11. In the limit of zero tempera-
ture, when nF becomes the step function, it is a tedious,
but straight forward task to perform the remaining inte-
grals exactly without any approximative expansion in k
or ω. The zero-temperature results are

Π00(k, ω) = −
mb

4π
e−iω0+

z(
ω

εk
,
k

2kF
) + (ω → −ω) (9)

and

Π11(k, ω) =
πφ̃2

48mb
e−iω0+

×

(
z(
ω

εk
,
k

2kF
)3 − 3(

2kF
k

)2 z(
ω

εk
,
k

2kF
)

)
+(ω → −ω) , (10)

where kF is the Fermi wave vector defined by µ =
k2
F /(2mb). We use the abbreviation

z(x, u) = 1 + ix−
√

(1 + ix)2 − u−2 , (11)
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and we define the square root as analytical continuation
from positive values of the root for positive radicands.
Our results, the zero-temperature response functions Π00

and Π11, are correct for arbitrary large or small values of
ω/εk and k/(2kF ). We still keep the convergence factor
exp(−iω0+), because that will be crucial in the following,
where we have to perform the frequency integral over Π00

(∼ 1/ω for large ω).

3.2 Ground-state energy

The ground-state energy coincides with the grand-
canonical potential for T → 0 after adding the term Nµ.
Using the expression (6), we get (here, nF (x) denotes the
Fermi function at zero temperature)

ERPA =
∑
k

nF (εk − µ) εk

+
~
2

∑
k 6=0

∫ ∞
0

dω

π
ln {1−Π00(k, ω)[W (k) +Π11(k, ω)]}

=
∑
k

nF (εk − µ) εk +
∑
k 6=0

1

2
~ωc ê

(
k

2kF
,
~ωc
2µ

)
(12)

(~ωc = ~2/(mbl
2
B)). Here, the first term is the energy of

the free CS fermions and the second term is the contri-
bution of the magneto-plasmon oscillators. While the first
sum is confined to the Fermi sphere, one has to discuss the
convergence of the second sum which we will do below. In
order to simplify the following analysis, we have defined

ê(u, v) = −
1

4

(
φ̃

2

1

u2
+

λ

uv

)
+ e(u, v) , (13)

with

e(u, v) =
2u2

v

∫ ∞
0

dx

π
ln{1 + I(x, u, v)} (14)

and

I(x, u, v) = (1− z+)

(
φ̃

2

v

2u2
+

λ

2u
+ (

φ̃

2
)2 1

12
(1− z+)

×

[
(1− z+)2(1− 3z2

−)−
3

u2

])
. (15)

From now on, we will use λ = ε2kF /(2µ) as a dimen-
sionless measure of the Coulomb interaction. z+(x, u) and
z−(x, u) are related to the real and imaginary parts of
z(x, u) in (11):

z±(x, u) =√
1

2

[√
(1− u−2 − x2)2 + 4x2 ± (1− u−2 − x2)

]
.(16)

The difference between the energy distributions ê and e is
due to the following: For large ω, Π00(k, ω) and Π11(k, ω)

0:5 1:0 1:5 2:0 2:5 3:0
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Fig. 1. ê(u, 1) for φ̃ = 2 and λ = 0.7.

decay as ω−1. Therefore, one has to study the convergence
of the ω integral in (12). Here, in the first term of an
expansion of the ln{· · · } around 1, the factors exp(−iω0+)
in Π00(k, ω) define the integration; in the higher terms
in the expansion, these convergence factors can be put
equal to one. e(u, v) is the expression which one would
obtain setting these factors equal to one everywhere. The
difference between ê and e thus comes from the difference
in the first term in the expansion of the ln{· · · }, calculated
once with and once without convergence factors.

Now, we analyse the contribution of the magneto-
plasmon oscillators to ERPA by studying the dependence
of ê(u, v) on u = k/(2kF ).

(i) We first discuss the behavior of ê(u, v) for large u.
With

z+(x, u) = 1−
1

2u2

1

1 + x2
−

1

8u4

1− 3x2

(1 + x2)3
+O(u−6) ,

z−(x, u) = x+O(u−2) (17)

a straight forward expansion of e(u, v) yields

ê(u, v) = −
1

2v

1

(2u)4

( φ̃
2

)2

+
1

2
λ2

+O(u−5) . (18)

Thus, the integral defining ERPA is convergent for large
wave vectors k. There is no need of an artificial cut off
in the ultraviolet. A numerical integration of (14) shows
in fact that the cut off is rather abrupt, cf. Figure 1. We
shall justify below the values v = 1 and λ = 0.7, which we
have chosen here for v and the strength of the Coulomb
interaction.

(ii) The opposite case of small u leads to a divergence.
The integral (14) is finite; its dominant contributions come
from x ∝ u−2. We find for u = 0

e(0, v) =

√
1

v

φ̃

2
· (19)

The result of the numerical integration for general u
as shown in Figure 2 confirms a smooth behavior of
e(u, v) for small u. The negative curvature in the region
near u = 0.9 is seen to be related to the value of λ.
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Fig. 2. e(u, 1) for φ̃ = 2 and λ = 0.7.

This feature gets less pronounced as λ is decreased. Hence,
ê(u, v) ∝ −φ̃/(8u2) ∝ k−2 for small k and ERPA contains
a logarithmic divergence in the infrared regime. This di-
vergent term in the energy is the same as that found by
Halperin, Lee, and Read [7], cf. their equation (6.27). It is
clear from the derivation, that this logarithmic divergence
comes from the first diagram in the RPA series in (5):

1

2

= −βΩ(1)
RPA

∼
β

2F

∑
k 6=0

K(k)
∑
k1

nF (k1 + k)nF (k1)

∼ N
1

4v
φ̃2 β~ωc ln

κ

η
· (20)

Here, we give only the term with the leading singularity
for decreasing infrared cut off η; κ� kF is an upper wave
vector cut off. The result (20) is quickly reproduced if

one uses only the leading term ê(u, v) ∼ −φ̃/(8u2) in the
integral for the energy (12). The logarithmic divergence is
explained as the result of the long-range behavior of the
CS interaction K(k) in a two-dimensional system. Thus
we see, that within the RPA, the ground-state energy is
infinite.

We wish to add two remarks. First, this divergence in
the energy is due to an insufficient treatment of the system
even without electron-electron interaction, i.e. the pertur-
bational treatment of the CS interaction. It is independent
of the electron-electron interaction, and, therefore the di-
vergence is unrelated to the inverse effective mass which
should scale with the strength of the Coulomb interac-
tion. Second, in other cases of RPA calculations, such a
divergence in the energy does not appear; in the case of
the Coulomb interaction in three dimensions, for example,
one has a convergent integral (

∫
d3k/k2) and the same is

true for the Coulomb interaction in two dimensions. Con-
sequently, for the case of the CS interaction, it becomes
necessary to study diagrams beyond the RPA.

3.3 Chemical potential

The chemical potential, as the ground-state energy, should
be derived from the grand-canonical potential. Calculat-
ing the mean particle number N from ΩRPA and using its
value given by the filling factor (4), we get at zero tem-
perature

v =
φ̃

2
+ 2φ̃v

∫ ∞
0

du u [u∂u + 2v∂v + λ∂λ] ê(u, v) . (21)

This equation should determine the chemical potential
µ via µ = 1

2~ωc/v. But ê(u, v) diverges in the infrared

regime as −φ̃/(8u2). Therefore, the r.h.s. of (21) becomes
infinitely large and there is no positive solution for the pa-
rameter v from this equation. Hence, we have to conclude
that within the RPA, there is no satisfactory solution for
the chemical potential.

3.4 Expansion of the energy in the Coulomb
interaction

Here, we wish to study the expansion of the ground-state
energy in the strength of the Coulomb interaction, λ. Gen-
erally, we have for the energy per particle

E/N =
1

2
~ωc +E(1)/N +O(λ2) . (22)

The first term is the energy of the lowest Landau level;
in the RPA, it diverges as shown above. Because the CS
transformation gives an exact reformulation of the prob-
lem also in the absence of an electron-electron interac-
tion, this divergence must be compensated by other di-
vergent diagrams; we expect such a compensation by the
diagrams discussed in Section 3.5 below. In the calculation
of the second term, now, we encounter the problem that
the unperturbed chemical potential can not be determined
from the unperturbed grand-canonical potential because
the divergence is not eliminated. As a way out, we insert
in the second term in (22) the known exact unperturbed
value µ = ~ωc/2. Because for free composite fermions,
µ = 1/(2mb)(4πN/F ), i.e. µ = ~ωcν (use Eq. (4)) that
value of µ coincides for half-filling accidentally with the
chemical potential of the free composite fermions. This
substitution fixes the variable v, v = 1. Using this and
taking the electron density ρ ≈ 1.5 × 1015 m−2 from the
experiments of Kang et al. [1] in GaAs (εr = 12.8 and
mb = 0.068 mel), one derives for the value of the relative
strength of the Coulomb interaction λ ≈ 0.7 which was
used in Figures 1 and 2 together with v = 1. We now
obtain for the second term in (22)

E
(1)
RPA/N =

ε2

lB

2φ̃

v3/2

∫ ∞
0

du

{
−

1

4
+ u2

∫ ∞
0

dx

π

1− z+(x, u)

1 + I0(x, u, v)

}
.(23)

Here, I0 = I |λ=0. A numerical evaluation is simple and

the result is E
(1)
RPA/N = −0.6 ε2/lB. This compares
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reasonably well with E
(1)
sim/N = −0.466 ε2/lB obtained

in numerical simulations in the spherical geometry by
Morf and d’Ambrumenil [14], and by Girlich [15] via the
threshold energy of the many-particle density of states.

3.5 Higher order logarithmic divergences

In the CS problem at d = 2, there are logarithmically
divergent diagrams in the grand-canonical potential, be-
cause the CS interaction K(k) diverges as 1/k2 for small
wave vectors. In contrast, in the Coulomb problems at zero
magnetic field in d = 3 and d = 2, such divergences are
absent. The lowest-order divergence is found in the loga-
rithmically divergent diagram (20), the first of the RPA
diagrams. In addition, there are diagrams for Ω beyond
the RPA diverging with higher powers of ln η. These di-
agrams are characterized by independent kl-integrations
over K(kl); they are either ladder type diagrams or maxi-
mally crossed diagrams or combinations of both. The lead-
ing singularities of the ladder diagrams in second and third
order are

1

2

= −βΩ(2)
L ∼

N

12v
β~ωc φ̃4

(
ln
κ

η

)2

, (24)

1

2

= −βΩ(3)
L ∼

N

160v2
(β~ωc)2 φ̃6

(
ln
κ

η

)3

. (25)

Similarly, for the maximally crossed diagrams

1

2�2

= −βΩ(2)
Lx ∼ −

N

48v
β~ωc φ̃4

(
ln
κ

η

)2

, (26)

1

2�3

= −βΩ(3)
Lx ∼

N

144v2
(β~ωc)2 φ̃6

(
ln
κ

η

)3

. (27)

Further, insertions of this kind are possible in the ring
diagrams (5). The summation of all logarithmically di-
vergent diagrams is expected to give a finite result.

This should then lead to a finite ground state energy and
a well defined equation for the chemical potential in the
absence of an electron-electron interaction. Also, such a
summation should improve the result for the Coulomb
contribution to the ground-state energy.

4 Conclusion

On the basis of bare response functions calculated
analytically for arbitrary k and ω, we evaluated the
grand-canonical potential in the RPA without any further
approximation. Because of the 1/k2-singularity of the
Chern-Simons interaction and the system’s dimension
d = 2, the grand-canonical potential contains a loga-
rithmically divergent term. Thus, the ground-state energy
and the chemical potential are not well defined within the
RPA. On the other hand, the CS transformation leads
to the picture of composite fermions forming a Fermi liq-
uid at zero magnetic field, which is experimentally well
supported. However, for a system of non-interacting elec-
trons in a strong magnetic field, which we call the “un-
perturbed problem”, this transformation already leads to
a very complicated reformulation of the Hamiltonian. We
have to conclude that, in the CS formulation, one has to
go beyond the RPA in order to get a satisfying solution of
that “unperturbed problem”.

Further, we calculated the first-order term in the ex-
pansion of the ground-state energy with respect to the
strength of the Coulomb interaction. There, we used for
the chemical potential, which remains undefined in the
RPA, the unperturbed value. The result obtained is ≈
25% larger than the result of numerical simulations. In
view of the absence of a small parameter in the “unper-
turbed problem” and given the simple random-phase ap-
proximation, this seems to be a reasonable agreement. For
an improvement of the calculation of the Coulomb contri-
bution to the energy, the “unperturbed problem” must
be solved in a better approximation, which should be free
from a divergence.

The “unperturbed problem” is well defined, the CS
transformation is a rigorous reformulation; therefore, one
should not encounter divergences. Thus, the divergent di-
agram in the RPA must be compensated by others. We
finally studied other logarithmically divergent diagrams,
beyond the RPA, and calculated their leading singulari-
ties. It is an open question, whether taking these leading
singularities into account is already sufficient for a com-
pensation. We consider this compensation, i.e. the screen-
ing of the CS interaction, to be closely related to the
recent discussion of the “dipole-nature” of the compos-
ite fermions [18–20]. We plan to return to this question in
a following publication.
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